

Transboundary Groundwater Management

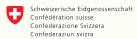
RésEAU Learning Journey on Groundwater 2024/2025
Webinar 3 - 12.6.2025

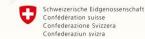
Technical housekeeping

Your microphone is currently off

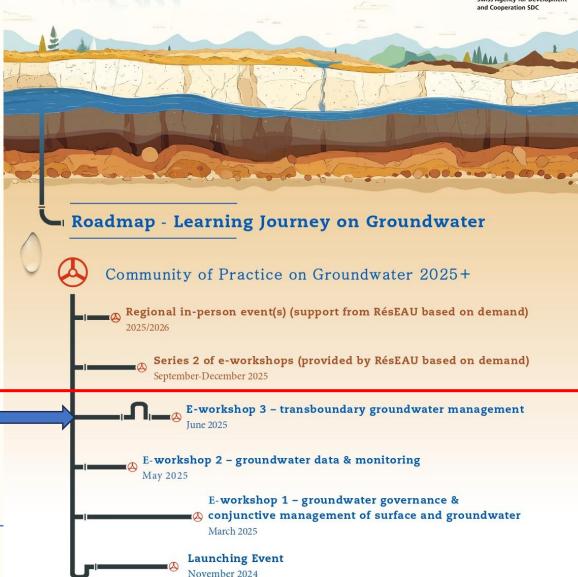
If you want to speak, click on the button at the bottom of the screen **to raise your hand.**Thank you for opening the mic only upon invitation.

If you have comments or questions during presentations, please post them in the chat, or wait for the Q&A moment to unmute yourself.


If you can't hear or see: leave and rejoin the meeting, and close other programs

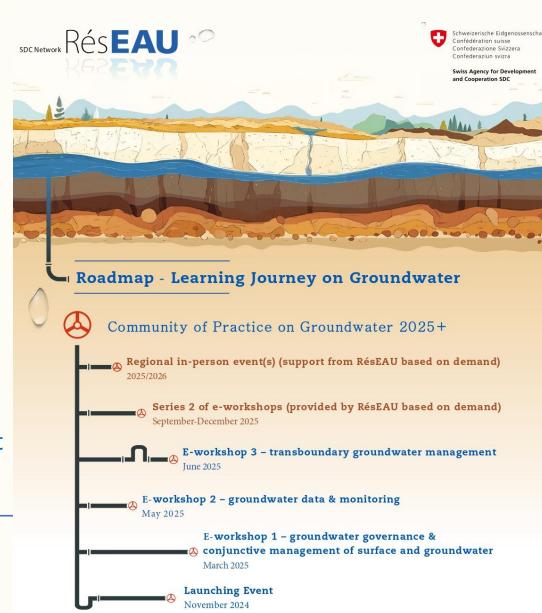

Parts of this event are being recorded and made available to the online knowledge platform RésEAU.

Contact Evana.breitenmoser@skat.ch if you need further support



Swiss Agency for Development

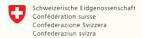
Where we are on our roadmap


Today:

RésEAU

What will/may happen next?

- Trend Observatory on Water:
 Podcast on Managed Acquifer
 Recharge (MAR)
- RésEAU Brief on Groundwater synthecizing the LJ so far
- Further LJ E-workshop(s):
 → Poll to explore interest
- Optional F2F event(s) based on demand -> express your interest to the Focal Point



Agenda

Input	Speaker
Keynote: Global overview in transboundary groundwater management	Chantal Demilecamps, Secretariat of the Water Convention, UNECE
Q&A on Keynote	
Case 1: Governance of Groundwater Resources in Transboundary Aquifers (GGRETA) - the Pretashkent Aquifer between Kazakhstan and Uzbekistan (Central Asia)	Serikzhan Atanov, former Project Coordinator of GGRETA in Central Asia at UNESCO, Water Management and Governance Specialist
Survey and break	Dr. Daniel Maselli, RésEAU Focal Point
Case 2: Al Hamad Groundwater basin between Jordan and Iraq	Dr. Marwan Alraggad, Head of INWRDAM
Case 3: The transboundary Azraq basalt aquifer: potential and cross-border cooperation	Prof. Mutawakil Obeidat, Director of the Water Diplomacy Center
Q&A on thematic inputs	Mufleh Alalaween, Regional Water Advisor for MENA, SDC
Concluding remarks	Prof. Mark Zeitoun, Head of Geneva Water Hub
Closing	Fabrice Fretz, Section Water, SDC

Global trends in transboundary groundwater management

Chantal Demilecamps, Water Convention Secretariat, UNECE

SDC Network RésEAU Webinar, 12 June 2025

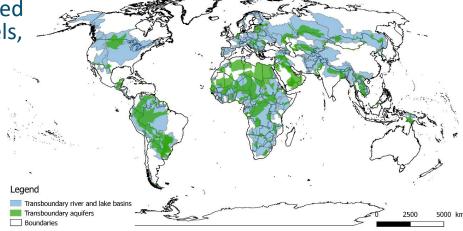
Progress on Transboundary Water Cooperation

Mid-term status of SDG Indicator 6.5.2, with a special focus on Climate Change

2024

3rd Progress Report on SDG indicator 6.5.2 (2024)

Transboundary Aquifers:
Advancing Water Cooperation (SDG 6.5.2),
Governance and Legal Frameworks



SDG 6: Ensure availability and sustainable management of water and sanitation for all.

Target 6.5: By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate.

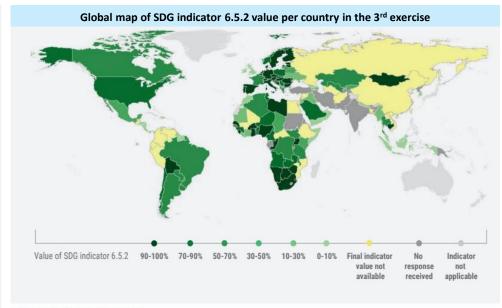
Indicator 6.5.1 Degree of IWRM

Indicator 6.5.2 Proportion of transboundary basin area with an operational arrangement for water cooperation

SDG indicator 6.5.2 process

 National reports collected and reviewed every 3 years (as for other SDG6 indicators):

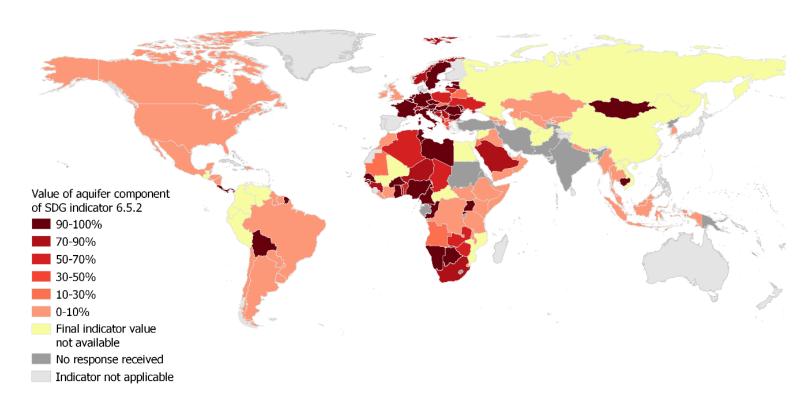
- National reports undergo a review process by UNECE and UNESCO
- Data submitted to:
 UN Statistical Division (https://unstats.un.org/sdgs/dataportal)
 UN-Water SDG 6 data portal (https://www.sdg6data.org/en)
- Data used in:
 - Progress reports on transboundary cooperation worldwide
 - Progress reports on cooperation under the Water Convention
 - SDGs Progress reports
 - HLPF on Sustainable Development, UN Summit for the Future and similar



Results 3rd exercise: Globally not on track

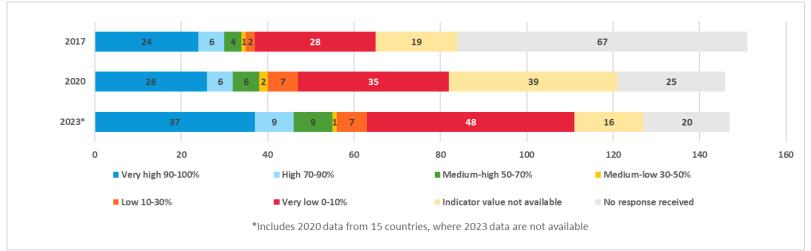
- 129 responses received in 2023-2024 out of 153 UN Member States with transboundary waters
- Only 43 countries have operational arrangements in place for 90% or more of their shared rivers, lakes and aquifers
- 59% global average of SDG indicator 6.5.2 value (no significant change since 2017)
- 8 countries improved cooperation
- **20+ countries** have no operational arrangements in place for any of their transboundary waters
- Current rate of progress suggests that only a third of countries sharing transboundary waters would have most of their waters (90% or more) covered by operational arrangements by 2030

(Source: developed by UNESCO and UNECE).



Results of the 3rd reporting in 2023 on SDG 6.5.2: Aquifer component (1)

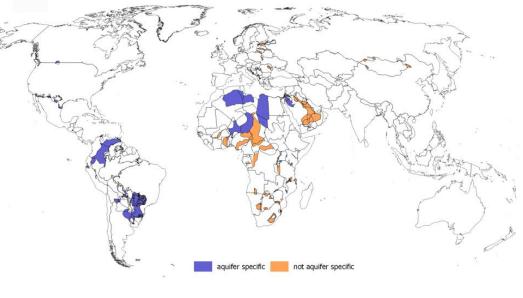
Proportion of transboundary aquifer area in a country covered by an operational arrangement 2023/24



Results of the 3rd reporting in 2023 on SDG 6.5.2: Aquifer component (2)

- Aquifer component available for 111 countries (vs 94 in 2020)
- For aquifers, average SDG 6.5.2 value 46% (vs 42% in 2020)
- Countries with their transboundary aquifer area covered by operational arrangement:
 - 37 countries with more than 90% (vs 26 in 2020)
 - 48 countries with less than 10%

Number of countries sharing transboundary aquifers & breakdown SDG indicator 6.5.2 value (2017, 2020, 2023)



Aquifer-specific agreements and recent developments in aquifer cooperation

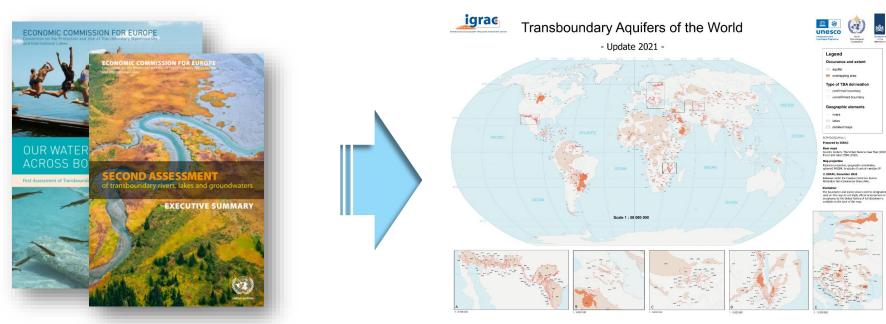
- 13 aquifer-specific arrangements reported, only 8 operational
- Reported cooperation and data on aquifers is often not harmonized among border countries
- Increased consideration of transboundary aquifers covered by non-aquifer specific arrangements, particularly in Africa:
 - Example: Multi-Country Cooperation Mechanism by Botswana, Namibia, and South Africa for Stampriet Transboundary Aquifer System nested in Orange-Senqu Watercourse Commission's Ground Water Hydrology Committee

Ch. Fraser and all. (2023)

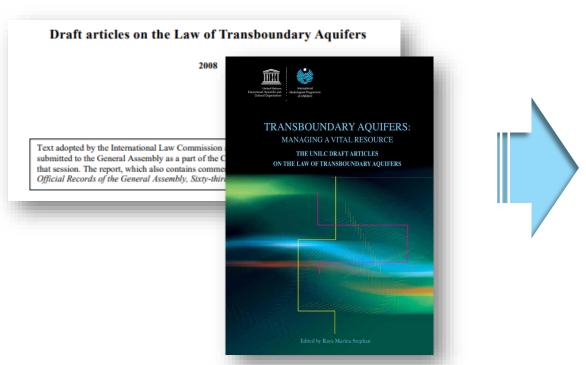
The UN Water Convention: supporting transboundary groundwater governance

A **global legal and institutional framework** promoting cooperation for the management of both transboundary **surface water and** groundwater. Supports countries at different levels:

- Data sharing, monitoring and assessment
- **Legal development:** The Model Provisions on Transboundary Groundwaters provide a **basis for agreements on transboundary aquifers**.
- Policy and technical guidance on different aspects of groundwater management: on monitoring and assessment, data-sharing, water-food-energy-ecosystem nexus, adaptation to climate change
- Promotion of experiences including on emerging issues: e.g. on conjunctive water management.
- Technical assistance for the development of cooperation: e.g. project on the Senegalo-Mauritanian Aquifer Basin.

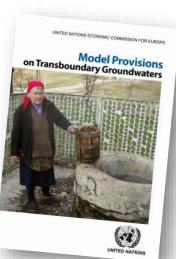


Stronger knowlege on groundwater and transboundary aquifers

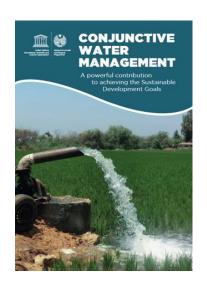

- UNESCO IGRAC Transboundary Aguifers Map used data from UNECE regional assessments for Europe and Central Asia
- Aguifer data from SDG 6.5.2 national reports feed into the updates of the Transboundary Aguifers Map

Practical guidance on governance: legal focus

Model Provisions on Transboundary Groundwaters by UNECE in 2014 inspired by Draft Articles on the Law of Transboundary Aquifers developed in 2008 with support of UNESCO IHP



Model Provisions on Transboundary Groundwaters


- 1. Prevent, control and reduce transboundary impacts, ensuring equitable and reasonable use.
- **2. Use** transboundary GW **sustainably**, maximizing long-term benefits and preserving GW ecosystems.
- 3. Cooperate in **identifying**, delineating and monitoring transboundary GW resources.
- 4. Integrate GW and surface water management.
- **5. Prevent** and control GW **pollution**, esp. for drinking water sources.
- 6. Exchange information & data on transboundary GW conditions & usage.
- 7. Implement joint/coordinated plans for sustainable GW management.
- 8. Conduct **environmental impact assessments** for activities that could significantly affect transboundary GW.
- 9. Establish a **joint body** to implement these provisions and coordinate cooperation.

Conjunctive Water Management: National to Transboundary

On-going development of a Policy guidance on conjunctive management of surface waters and groundwaters under the Water Convention, with a focus on transboundary basins, by a dedicated Expert Group.

Includes an analysis of best practices.

Lead Parties: Estonia and The Gambia

Partners: UNESCO, CeReGAS, GTK, IGRAC, IAH, SADC-GMI

Recommendations: Progressing Transboundary Water Cooperation (1)

Recommendations: Progressing Transboundary Water Cooperation (2)

Ensuring that operational arrangements cover all transboundary aquifers by 2030 remains a priority => need to improve **data** availability and foster **cooperation**

- Call on all countries to engage in 6.5.2 reporting in 2026, and enhance data availability on aquifers
- Mobilize and build political will for transboundary water cooperation
- At national level, use 6.5.2 to take stock, identify gaps, and develop actions plans. Where possible, coordinate 6.5.2 reporting at basin level
- Capitalize on the legal frameworks (1992 Water Convention; Draft Articles on the Law of Transboundary Aquifers) to develop new agreements where lacking
- Use 6.5.2 as an opportunity to address data gaps (i.e. transboundary aquifers, data exchange) and invest in capacity building

Thanks for listening!

Water Convention Secretariat, UNECE

6.5.2 Contact and Helpdesk

UNECE:

transboundary water cooperation reporting@un.org

UNESCO:

transboundary water cooperation reporting@unesco.org

Download the report!

UNECE

UNESCO

UN-

SDG 6 Data Portal

@UNECEWater / @UNESCO

@UNECEWater / @UNESCO

Progress on Transboundary Water Cooperation

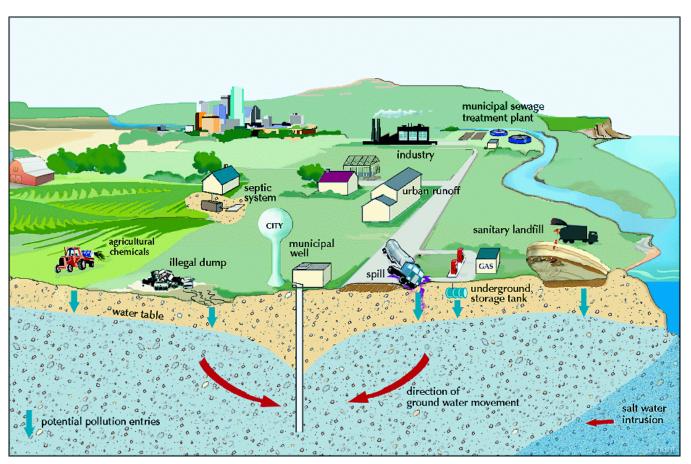
Mid-term status of SDG Indicator 6.5.2. with a special focus on Climate Change

Available in Arabic, English, French, Russian and Spanish

Copyright SDG 6.5.2 team at UNECE and UNESCO, all rights reserved. For reproduction permission and all other issues, please contact: transboundary_water_cooperation_reporting@un.org; transboundary_water_cooperation_reporting@unesco.org

Q&A

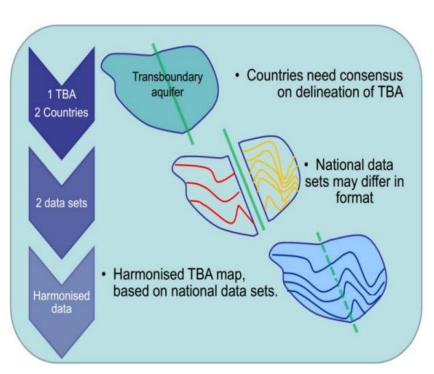
Governance of Groundwater Resources in Transboundary Aquifers (TBA)

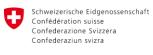

Case study: Pretashkent Transboundary Aquifer between Kazakhstan and Uzbekistan (Central Asia)

Serikzhan ATANOV

International Consultant Transboundary Water Cooperation

- An invisible resource
- It is difficult to manage what is unknown
- Importance of knowledge


Groundwater
management goes
beyond water resources
alone


Zaporozec & Miller, Groundwater Pollution (UNESCO,

Functions to be performed in the frame of collaboration:

- Regular data exchange and knowledge development
- Monitoring of transboundary aquifer (joint monitoring in perspective)
- Development of management plans
- Protection of ecosystems, recharge and discharge zones
- Prevention of environmental pollution

Swiss Agency for Development and Cooperation SDC

GROUNDWATER RESOURCES GOVERNANCE in TRANSBOUNDARY AQUIFERS

(GGRETA Project)

The Pritashkent aquifer is an artesian system of transboundary aquifers between Kazakhstan and Uzbekistan.

Due to over-exploitation, there has been a steady **decline of the water table**.

Since groundwater in the Pretashkent aquifer is practically non-renewable, this situation requires **transboundary cooperation on the sustainable use of the aquifer.**

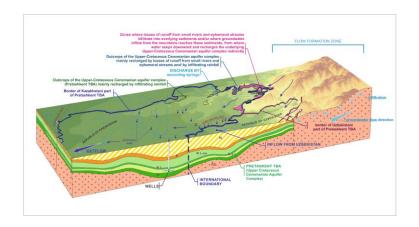
Project phases

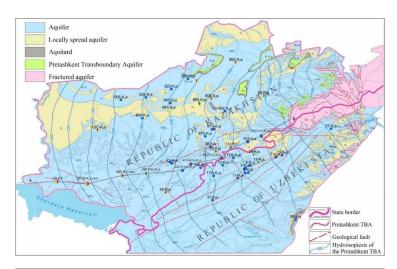
Phase 1: Situational Analisys (2015-2016)

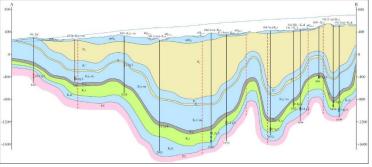
Phase 2: Hydrodiplomacy - removing barriers,

impeding international cooperation (2016-2019)

Phase 3: Modeling, scenarios, road map (2019-2022)

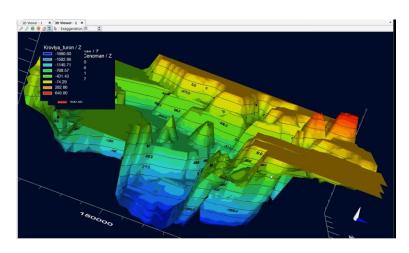


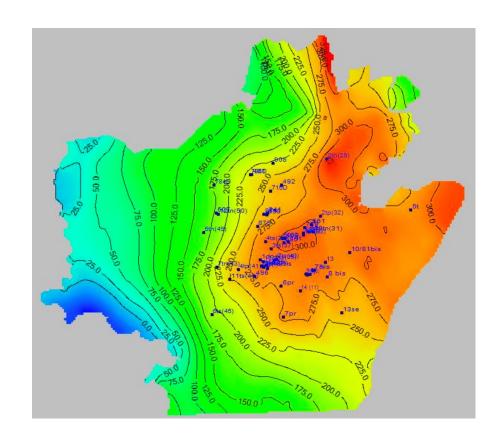




Science as a basis for cooperation

- 1. Modeling
- 2. Scenarios of the Aquifer depletion
- 3. Technical Meetings and Consultations with Stakeholders
- 4. Joint Action Programme


Modeling and scenarios

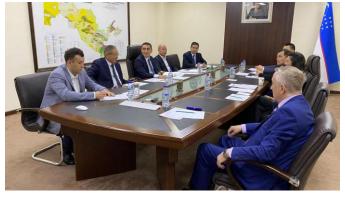

Intensive water abstraction ->

Water table depletion ->

Water availability & quality issues ->

(transboundary) Economic impact

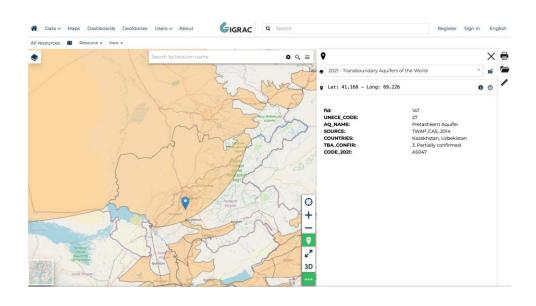
Consultations and Roadmap


- Joint Model as a mechanism for cooperation development
- Strengthening information and knowledge exchange
- Recommendations for TBA exploitation based on scenarios results

 \downarrow

Roadmap

Roadmap & Broader Context


Roadmap on protection and sustainable use of groundwater resources of the Pretashkent Transboundary Aquifer (PTBA):

- Improvement of the legal framework for cooperation (MoU)
- Monitoring and Information/Knowledge Exchange
- Strengthening institutional aspects of groundwater governance on the national levels
- Assessments (socio-economical impact)

Roadmap & Broader Context

 Contribution to SDG 6.5.2 Indicator on transboundary cooperation

The Convention on the Protection and Use of Transboundary Watercourses and International Lakes (Water Convention)

Challenges & Lessons Leared (Pretashkent Aquifer Case)

Fossil Water

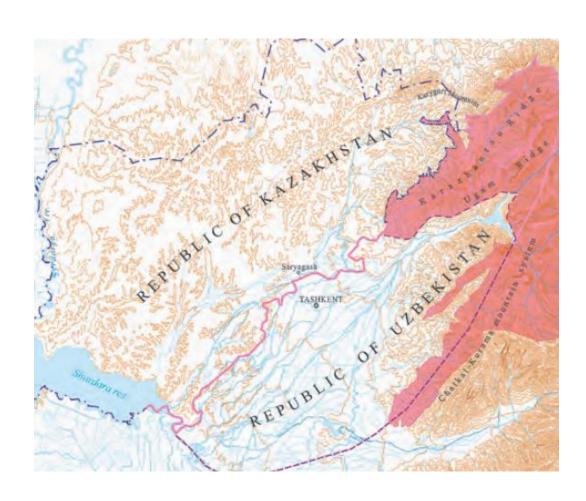
Pretashkent aquifer is fossil (non-renewable) groundwater; translation inconsistencies and classification as a confined aquifer create communication gaps.

Inherited Legislation

Existing laws prioritize data security over transparency, limiting access and sharing of groundwater data.

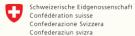
Prioritize Information Exchange Over Raw Data Sharing

Given data security constraints, focus on exchanging processed insights and interpretations instead of raw groundwater data.


Fragmented Legal Framework

Groundwater governance spans multiple codes (e.g., Water Code, Subsoil Law), creating overlaps and legal ambiguities.

Promote Science-Based, Horizontal Cooperation


Avoid politicizing groundwater issues by fostering collaboration among scientific institutions and technical agencies, focusing on information exchange rather than formal data sharing, which can trigger involvement of political structures and complicate the process.

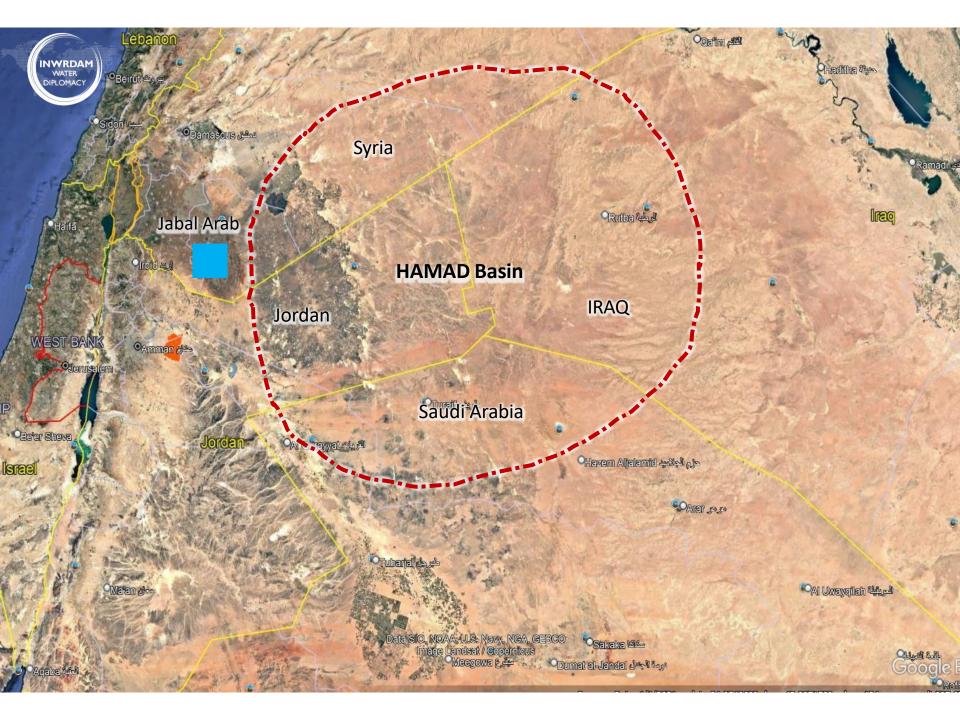
Questions? Glad to address them during the Q&A

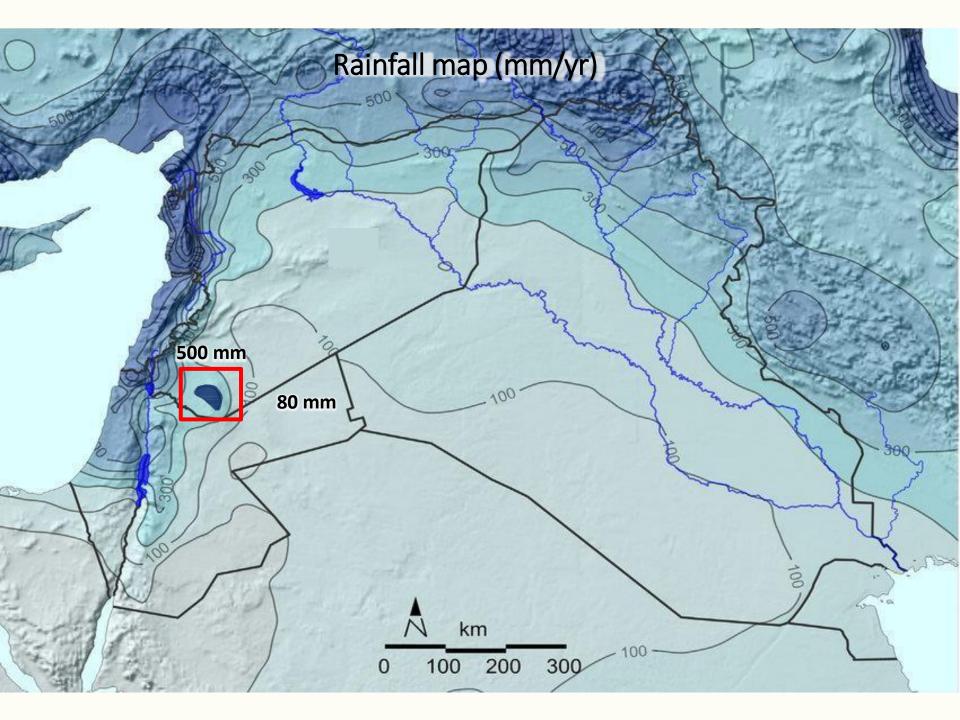
Survey and short break

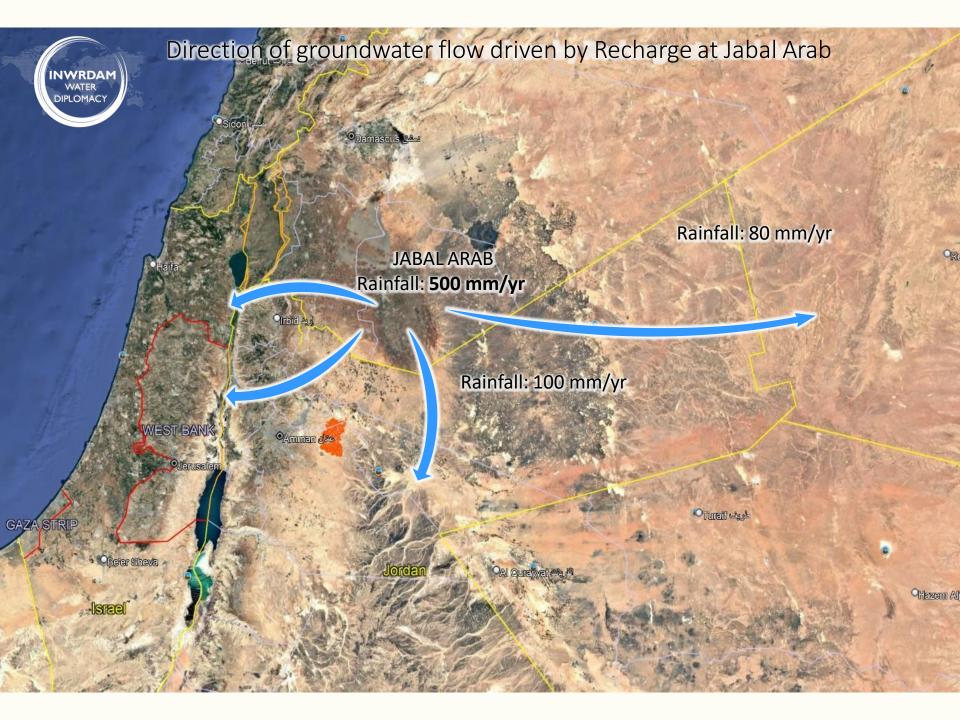
Hamad Transboundary Groundwater basin

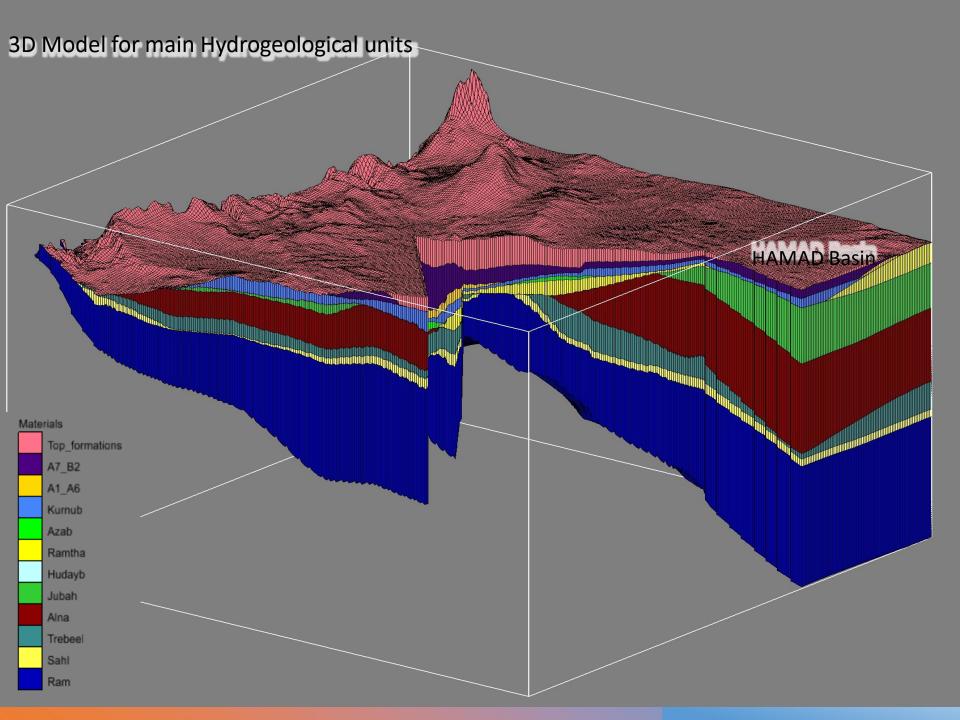
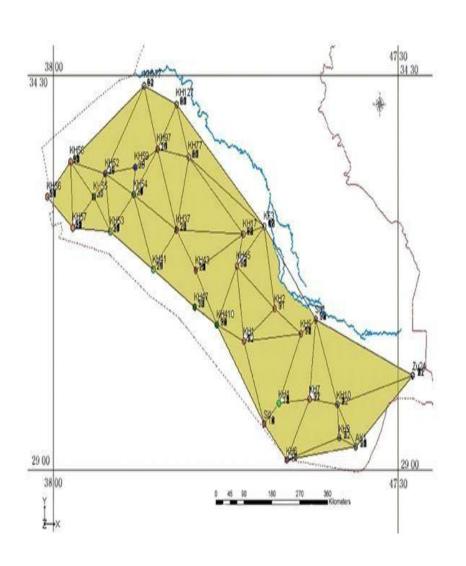
Dr. Marwan Alraggad Executive Director

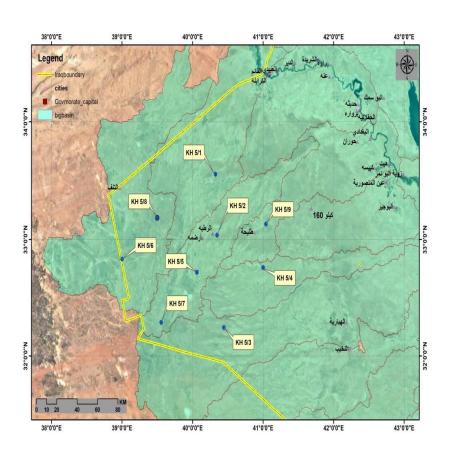
12 June 2025



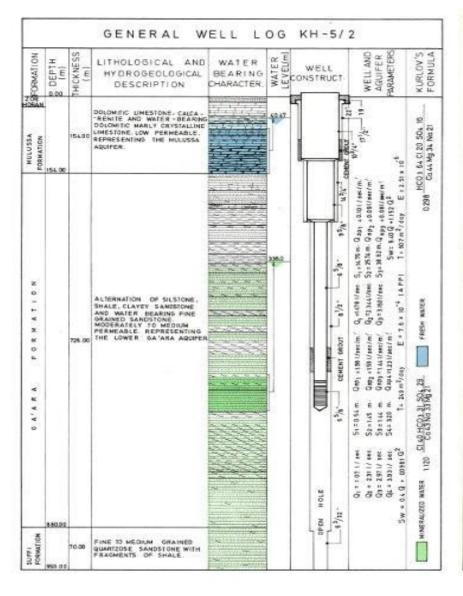


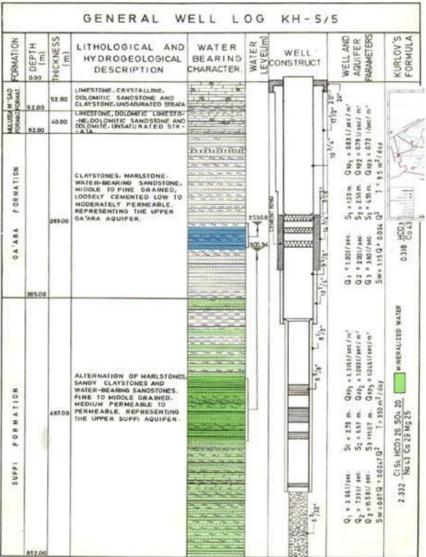



Table 2. List of shared aquifer systems in Western Asia

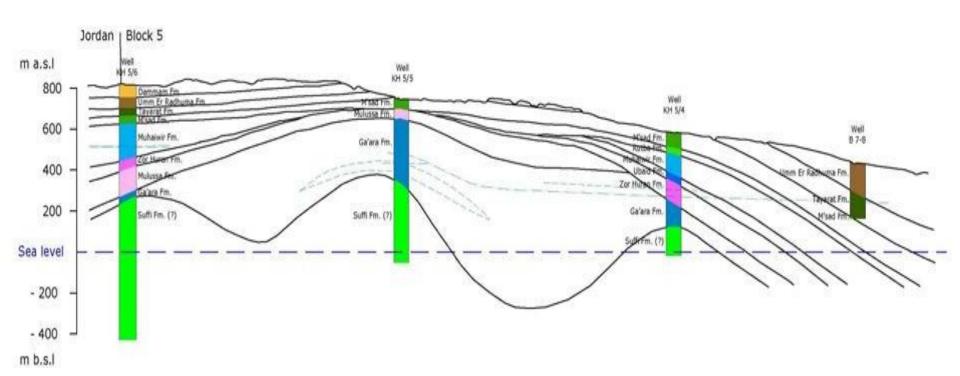
SHARED AQUIFER SYSTEM	RIPARIAN COUNTRIES
Saq-Ram Aquifer System (West)	Jordan, Saudi Arabia
Wajid Aquifer System	Saudi Arabia, Yemen
Wasia-Biyadh-Aruma Aquifer System (South): Tawila-Mahra/Cretaceous Sand	s Saudi Arabia, Yemen
Wasia-Biyadh-Aruma Aquifer System (North): Sakaka-Rutba	Iraq, Saudi Arabia
Umm er Radhuma-Dammam Aquifer System (South): Rub' al Khali	Oman, Saudi Arabia, United Arab Emirates, Yemen
Umm er Radhuma-Dammam Aquifer System (Centre): Gulf	Bahrain, Qatar, Saudi Arabia
Umm er Radhuma-Dammam Aquifer System (North): Widyan-Salman	Iraq, Kuwait, Saudi Arabia
Tawil-Quaternary Aquifer System: Wadi Sirhan Basin	Jordan, Saudi Arabia
Ga'ara Aquifer System ^a	Iraq, Jordan, Saudi Arabia, Syria
Anti-Lebanon ^b	Lebanon, Syria
Western Aquifer Basin	Egypt, Israel, Palestine
Central Hammad Basin ^a	Jordan, Syria
Eastern Aquifer Basin ^a	Israel, Palestine
Coastal Aquifer Basin	Egypt, Israel, Palestine
North-Eastern Aquifer Basin ^a	Israel, Palestine
Basalt Aquifer System (West): Yarmouk Basin	Jordan, Syria
Basalt Aquifer System (South): Azraq-Dhuleil Basin	Jordan, Syria
Western Galilee Basin ^a	Israel, Lebanon




Selected wells for Geological correlation

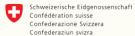
Example well logs

Groundwater Aquifer Formation in Iraq	Equivalent in Neighboring Countries	Neighboring Country
Ka'rah	Al-Jouf - Anzah	Saudi Arabia
Malasi	Hill	Syria
Mahyur	Sudair	Saudi Arabia
Rutbah	Abu Rwais	Jordan
Rutbah	Al-Dhahab	Jordan
Hartha	Sakaka / Al-Wusay' Group	Saudi Arabia
Tiyarat	Kurnub, Wadi Seer	Jordan
Tiyarat	Al-Wusay'	Saudi Arabia
Umm Ardhuma	Al-Balqa 2, Al-'Urmah	Jordan, Saudi Arabia
Umm Ardhuma	Al-Balqa 3, Hibr	Jordan, Saudi Arabia
Umm Ardhuma	Al-Balqa 4, Hibr	Jordan, Saudi Arabia
Umm Ardhuma	Al-Balqa 5	Jordan
Umm Ardhuma	Dammam	Kuwait

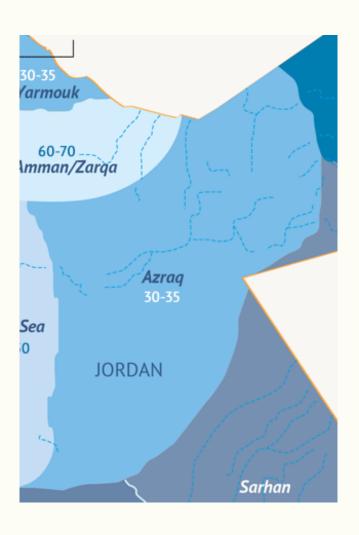


قرعلاف قفوجلا هليملا فقطنوت	راوجلا نللبف فلملا	راوجلا ب
قرعْ كَ لا	فوجلا -هزنع	تيوعىلا
يصلملا	ل يە	ا <u>ډ</u> و س
روـي حم	ري د	تيوعىلا
ة <u>ب</u> طر لا	سور وأ	ندرأ لا
ا الا الا	به <u>د</u> بهخ	ندرأ لا
ةثرله لا	اکاکس/عیولا ةعومجم	تيوعىلا
نارايطلا	رىس يداو ،بنرك	ندرأ لا
نارايطلا	عيول	تيوعىلا

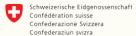
Result: Lithological continuation


Question: Hydrological continuation?

Thank You


The transboundary Azraq basalt Aquifer

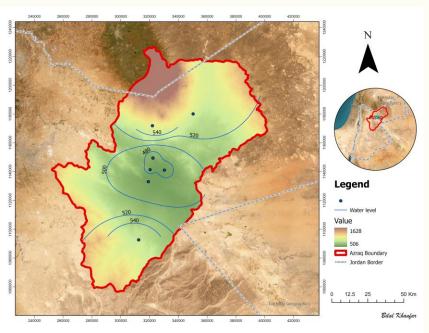
Appraisal and cross-border cooperation


Mutawakil Obeidat, Water Diplomacy Center, Jordan University of Science and Technology

Overview

- ➤ Location: East-central Jordan
- ➤ Area: ~12,710 km²
- ➤94% of this area located within Jordan; 5% in Syria and 1% in Saudi Arabia
- ➤The Azraq Wetland Reserve, a Ramsar site

Hydrology of Azraq Basin


Climate & Precipitation

- Climate: Semi-arid area with hot, dry summers and fairly wet, cold winters
- Annual Rainfall: 50 mm/ year in the Azraq Oasis and 500 mm/year in the Jabal Al Arab area, mostly between January and March
- Evaporation: 2400 mm/year

Aquifer System & Groundwater Flow

- 3 aquifers: Upper (main source), Middle (Confined), deep (Saline).
- Groundwater flow: North-South (From Syria to Azraq)
- Recharge to the upper aquifer: about 34 MCM/y, mainly via basalt infiltration/wadies

Objectives

- The project was set up to encourage collaboration on the transboundary Azraq basalt aquifer.
- Developing a **comprehensive protocol** for understanding terrain, evaluating the status of recharge, and implementing appropriate interventions for artificial recharge.
- Fostering strong collaboration between various national and regional entities.

Watershed of interest

*Length North to south approx. 65 km; *Width: Max = 13 km

Project components

Characterization of the surface flow

- DEM and field surveys
- Laser scanning
- High Resolution Drone survey
- Installation of monitoring systems
- Soil sampling

Development of computer models

Characterization of the groundwater flow

- ✓ Collection of well data
- Sampling and analyzing for chemical and isotopic properties
- ✓ Investigation of existing computer models

Design and implementation of a Managed Aquifer Recharge dam

- Finding an appropriate site and conducting field investigations
- Geophysics and areal surveys
- Design and implementation of the intervention;
 Monitoring the outcomes.

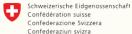
Design and implementation of a Managed Aquifer Recharge dam

Finding an appropriate site and conducting field investigations

Geophysics and areal surveys

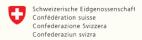
Design and implementation of the intervention

Monitoring the outcomes.



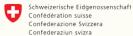
Partners and cross-border cooperation

Partners



Cross-border cooperation

- ➤ Communication with the Syrian Ministry of Energy willingness to cooperate.
- Meeting/workshop at the WDC for Jordanian and Syrian partners.
- Data sharing/exchange.
- > Knowledge and experience exchange.
- Water diplomacy trainings/trust building.
- Joint management of the aquifer.
- Replication of the methodology to similar settings in the region



Thank you

Q&A on case studies

Closing Remarks

Prof. Mark Zeitoun, Director of the Geneva Water Hub

Thank you

For follow-up questions about this webinar, please contact frank.wiederkehr@skat.ch

Don't forget to join the RésEAU community to stay up to date about this Learning Journey and other news & activities: https://dgroups.org/sdc/reseau

This event has been recorded and will be made available on https://www.sdc-water.ch/

